This work brings, **magic squares **of order 3 to 32 just with two digits in such a way that the magic squares are **upside-down** and **mirror looking** independent of **magic sums**. These types of** magic squares** we call as **universal magic squares**. This is done only with two digits 1 and 8. The work for the digits 2 and 5, and 6 and 9 is given separately. In case of 2 and 5, the numbers are written in digital form. In mirror looking case, 2 becomes 5 and 5 as 2. For the case of 6 and 9, we have only **upside-down magic squares**. In this case, when making 180 degrees rotation 6 becomes 9 and 9 as 6. In case of order 3 it is semi-magic square. The work is divided in two papers. One from order 3 to 16 and another for order 17 to 32. See the links below:

- Inder J. Taneja, 2-Digits Universal and Upside-Down Palindromic Magic and Bimagic Squares: Orders 3 to 16,
**Zenodo**, April 07, 2020, pp. 1-103, http://doi.org/10.5281/zenodo.3743362. - Inder J. Taneja, Universal Magic and Bimagic Squares of Orders 17 to 32 With Digits 1 and 8, Zenodo, May 30, 2020, pp. 1-103, http://doi.org/10.5281/zenodo.3866366,

The first link is for all the three cases, while the second link in only for the digits 1 and 8. The magic squares of orders 8, 9, 16, 25 and 32 are also written in bimagic squares. While for the case of order 24, the result is semi-bimagic. The block-wise constructions of magic squares of orders 8, 9, 12, 15, 16, 18, 20, 21, 24, 25, 27, 28, 30 and 32 are also given. The cases of orders 15, 21 and 27 are semi-magic squares. The whole the work is without use of any programming language. The work is done just with number’s combinations. For the orders 3 to 16 the **palindromic magic squares** are also given.

There are 4-digits in each cell for the magic squares of orders 3 and 4. 6-digits in each cell for the magic squares of orders 5 to 8. 8-digits in each cell for the magic squares of order 9 to 16. 10-digits in each cell for the magic squares of order 17 to 32. For the semi-bimagic and bimagic squares of orders 24, 25 and 32, there are 12-digits in each cell.

Similar kind of work for the order 33 to 64, and for the orders 65 to 128 is under preparation.

Examples:

Download the work at the following links:

- nder J. Taneja, 2-Digits Universal and Upside-Down Palindromic Magic and Bimagic Squares: Orders 3 to 16,
**Zenodo**, April 07, 2020, pp. 1-103, http://doi.org/10.5281/zenodo.3743362. - Inder J. Taneja, Universal Magic and Bimagic Squares of Orders 17 to 32 With Digits 1 and 8, Zenodo, May 30, 2020, pp. 1-103, http://doi.org/10.5281/zenodo.3866366,

For the digits {2,5} and {6,9} the universal and upside down magic squares the links are as follows:

- Inder J. Taneja, Universal Magic and Bimagic Squares of Orders 17 to 32 With Digits 2 and 5,
**Zenodo**, May 30, 2020, pp. 1-113 http://doi.org/10.5281/zenodo.3866386 - Inder J. Taneja, Upside-Down Magic and Bimagic Squares of Orders 17 to 32 With Digits 6 and 9, Zenodo, May 30, 2020, pp.1-98 http://doi.org/10.5281/zenodo.3866396

## One thought